您的浏览器目前处于缩放状态,页面可能会出现错位现象,建议100%大小显示。(快捷键:Ctrl+0)

当前位置:首页 > 图像设计 > 发表快报

Small - 南京大学余林蔚教授

发布时间: 2022-10-21 来源: WILEY-VCH

Title: Ultra-Confined Catalytic Growth Integration of Sub-10 nm 3D Stacked Silicon Nanowires Via a Self-Delimited Droplet Formation Strategy

Abstract: Fabricating ultrathin silicon (Si) channels down to critical dimension (CD) <10 nm, a key capability to implementing cutting-edge microelectronics and quantum charge-qubits, has never been accomplished via an extremely low-cost catalytic growth. In this work, 3D stacked ultrathin Si nanowires (SiNWs) are demonstrated, with width and height of Wnw = 9.9 ± 1.2 nm (down to 8 nm) and Hnw = 18.8 ± 1.8 nm, that can be reliably grown into the ultrafine sidewall grooves, approaching to the CD of 10 nm technology node, thanks to a new self-delimited droplet control strategy. Interestingly, the cross-sections of the as-grown SiNW channels can also be easily tailored from fin-like to sheet-like geometries by tuning the groove profile, while a sharply folding guided growth indicates a unique capability to produce closely-packed multiple rows of stacked SiNWs, out of a single run growth, with the minimal use of catalyst metal. Prototype field effect transistors are also successfully fabricated, achieving Ion/off ratio and sub-threshold swing of >106 and 125 mV dec−1, respectively. These results highlight the unexplored potential of versatile catalytic growth to compete with, or complement, the advanced top-down etching technology in the exploitation of monolithic 3D integration of logic-in-memory, neuromorphic and charge-qubit applications.

客服:010-86468642